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1 Activity goal

The goal of this laboratory activity is to design a PID position controller for the DC servomotor
available in the laboratory. The design is carried out in the frequency domain (i.e., using the Bode’s
method) with the adoption of a nominal model of the motor, whose parameters are deduced from
the datasheets. In the second part of the activity, the motor parameters, including static and viscous
friction, are estimated through simple experimental tests. These parameters will be used in the next
laboratory activity to improve control performance, particularly by implementing a feedforward inertia
and friction compensation scheme.

2 Analytical model of the DC gearmotor

The electromechanical structure of a permanent-magnet DC motor is shown in Fig. 1. A rotation
of the motor shaft is obtained as the result of the interaction of the magnetic field generated by the
armature current with the existing field produced by the stator magnets. A device called commutator
is used to keep the armature current flowing always in the same direction within the stator field;
maximum torque is achieved by always supplying the armature current to the armature coil faced

Figure 1: Electromechanical structure of a permanent–magnet DC motor.
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Figure 2: DC gearmotor: lumped–element diagram.

perpendicularly to the stator field. Electrical contacts called brushes (typically, spring-loaded carbon
contacts) are used to supply the electric current to the commutator and, in turn, the armature coils.
The lumped-element diagram of the Quanser SRV–02 gearmotor available in laboratory is shown in

Fig. 2. In the diagram, the DC motor is represented by the equivalent electric circuit of its armature
(i.e. series connection of the resistance Ra, inductance La, and back electromotive force source ue),
and the rotor moment of inertia Jm. The rotor inertia is moved by the motor torque τm, which
originates from the interaction of the magnetic fields generated by the armature current and the
stator permanent magnets. A gearbox is used to transfer the rotary motion to an external inertial
load with moment of inertia Jd. The connection between the gearbox and the mechanical load is
assumed to be rigid (i.e. no elasticity is present in between the two elements). The armature voltage
ua is supplied by a voltage driver. A shunt resistor Rs is connected in between the voltage driver
output and the armature circuit. By sensing the voltage drop across such resistor (i.e. the difference
between the driver output voltage udrv and the armature voltage ua), and knowing the nominal
value of the resistor, it is possible to infer the current passing through the resistor, which is indeed
the armature current ia. A complete definition of the symbols used in Fig. 2 is reported in Tab. 1.

Jm, Bm rotor moment of inertia and viscous friction coefficient
Jl, Bl load moment of inertia and viscous friction coefficient
Ra, La resistance and inductance of the armature circuit
ua, ia supply voltage and current to the armature circuit

ue back electromotive force (BEMF)
kt, ke torque and electric (BEMF) constants

τm, ωm, ϑm motor side torque, speed and position
τl, ωl, ϑl load side torque, speed and position

τd disturbance torque applied to the load inertia
N planetary gearbox reduction ratio
Rs shunt resistance

u, udrv voltage driver input and output voltages
kdrv, fc,drv voltage driver attenuation gain and cut–off frequency

Table 1: DC gearmotor with inertial load: symbols definitions.
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Figure 3: DC gearmotor: free–body diagram.

Regarding the load inertia Jl, this is equal to Jl = Jd + 3 J72, where Jd and J72 are the moments of
inertia of, respectively, the extra disc mounted on the output shaft and the external 72–tooth gear.
With the aid of the free–body diagram reported in Fig. 3 (which highlights the internal torques
exchanged between the bodies), the following lumped–parameter LTI model of the DC gearmotor
can be easily derived:

La
dia

dt
+ (Ra + Rs) ia = udrv − ue (electrical dynamics)

Jm
dωm

dt
+ Bm ωm = τm − τ ′

l (rotor mechanical dynamics)

Jl
dωl

dt
+ Bl ωl = τl − τd (load mechanical dynamics)

(1)

(2)

(3)

with  ue = ke ωm (law of generators)

τm = kt ia (law of motors)

(4)

(5)

and  ωl = ωm/N (gearbox speed transformation)

τl = N τ ′
l (gearbox torque transformation)

(6)

(7)

The equation (7) is derived from the power balance of an ideal gearbox with a 100% efficiency, i.e.
by assuming that the gearbox mechanical input power Pm = τ ′

l ωm is equal to the output power
Pl = τl ωl. The torque τd in (3) represents a generic disturbance torque exerted at the load side. It
can be used to model any externally applied torque. In this handout, it is used to account for the
Coulomb (static) friction of the mechanical transmission. The Coulomb friction can be modelled as
a constant resistant torque which opposes to the load movement, namely:

τd = τsf sign(ωl) , τsf > 0 (Coulomb friction at load side) (8)

The overall mechanical dynamics can be obtained by combining (2), (3) with (6), (7); at motor side,
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it holds that:

Jeq
dωm

dt
+ Beq ωm = τm − 1

N
τd

(
overall mechanical dynamics

at motor side

)
(9)

where
Jeq = Jm + Jl

N2 , Beq = Bm + Bl

N2 (10)

are the total inertia and viscous friction as “seen” at motor side. Alternatively, at load side, the
overall mechanical dynamics is:

N2 Jeq
dωl

dt
+ N2 Beq ωl = N τm − τd

(
overall mechanical dynamics

at load side

)
(11)

with N2 Jeq and N2 Beq being the total inertia and viscous friction “seen” at load side. From (9),
note that the total friction torque (viscous + static) generated at the motor side is equal to:

τ ′
f = Beq ωm + τsf

N
sign (ωm) (total friction at motor side) (12)

At load side, the total friction is equal to:

τf = N τ ′
f = N2 Beq ωl + τsf sign (ωl) (total friction at load side) (13)

The voltage udrv in (1) is provided by the voltage driver, which is a power operational amplifier
(op–amp) with a non–inverting configuration. Therefore, it holds that:

udrv =
(

1 + R3
R4

)
u+ (14)

where u+ is the voltage at the non–inverting input of the op–amp. By noting that the currents flowing
through the capacitor C1 and the resistance R2 are, respectively, i1 = C1 du+/dt and i2 = u+/R2,
so that u+ = u − R1 (i1 + i2), it is possible to obtain the following relation between the two voltages
u and u+ (after some algebraic manipulations):(

R1R2C1
R1 + R2

)
du+
dt

+ u+ = R2
R1 + R2

u (15)

By combining (14) and (15) it finally holds that:(
R1R2C1
R1 + R2

)
dudrv

dt
+ udrv =

(
1 + R3

R4

)
R2

R1 + R2
u (16)

After defining
kdrv =

(
1 + R3

R4

)
R2

R1 + R2
, Tdrv = R1R2C1

R1 + R2
(17)

the equation (16) can be rewritten as

Tdrv
dudrv

dt
+ udrv = kdrv u (voltage driver dynamics) (18)

which resembles the dynamics of a first order low–pass filter with time constant Tdrv (and hence
cut–off frequency ωc = 1/Tdrv in [rad/s] units, or fc = 1/(2πTdrv) in [Hz] units) and DC gain kdrv.
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Figure 4: DC gearmotor: block diagram.

After using (4) in (1), (5) in (9) and after recalling (18), the following analytical model of the DC
gearmotor with inertial load is finally obtained:

La
dia

dt
+ Req ia = udrv − ke ωm

Jeq
dωm

dt
+ Beq ωm = kt ia − 1

N
τd

Tdrv
dudrv

dt
+ udrv = kdrv u

(19)

(20)

(21)

where
Req = Ra + Rs (22)

By applying the Laplace transform to both sides of (19)–(21), the following set of algebraic equations
result: 

(La s + Req) Ia(s) = Udrv(s) − ke Ωm(s)

(Jeq s + Beq) Ωm(s) = kt Ia(s) − 1
N

Td(s)

(Tdrv s + 1) Udrv(s) = kdrv U(s)

(23)

(24)

(25)

which corresponds to the block diagram shown in Fig. 4. After some algebraic manipulations, it
follows that:

Pu → ωm(s) = Ωm(s)
U(s) = kdrv

Tdrvs + 1 · kt

(La s + Req)(Jeq s + Beq) + kt ke
(26)

Since ωl = ωm/N and ωl = dϑl/dt, so that Θl(s) = Ωm(s)/(Ns), it finally holds that:

Pu → ϑl
(s) = Θl(s)

U(s) = kdrv

Tdrvs + 1 · kt

(La s + Req)(Jeq s + Beq) + kt ke
· 1

Ns
(27)

Typically, the time constants of the voltage driver and the armature circuit are both very small, i.e.

La/Req ≪ 1 , Tdrv ≪ 1 (28)

so that the transfer function (27) can be simplified as follows:

P (s) = kdrv kt

Req (Jeq s + Beq) + kt ke
· 1

Ns
= km

Tm s + 1 · 1
Ns

(29)

with
km = kdrv kt

Req Beq + kt ke
, Tm = Req Jeq

Req Beq + kt ke
(30)

R. Antonello, F. Ticozzi Control Engineering Laboratory 5/14



Armature resistance Ra 2.6 Ω
Armature inductance La 180 µH
Electric (BEMF) constant ke 7.68 × 10−3 Vs/rad
Torque constant kt 7.682 × 10−3 Nm/A
Rotor inertia Jm 3.90 × 10−7 kg m2

Rotor viscous friction coefficient Bm not available
Gearbox ratio N 14
Moment of inertia of external 72–tooth gear J72 1.4 × 10−6 kg m2

Moment of inertia of extra disc Jd 3.0 × 10−5 kg m2

Load viscous friction coefficient Bl to be estimated
Voltage driver static gain kdrv ≈ 0.6
Voltage driver cut–off frequency fc,drv ≈ 1.2 kHz
Shunt resistance Rs 0.5 Ω

Table 2: DC gearmotor (plant) nominal parameters.

The nominal values of the plant parameters are reported in Tab. 2 (see also the introductory guide
to the experimental setup).

3 PID control design with frequency response methods

3.1 Formulation of control design specifications for the loop transfer function

Control design specifications define the desired characteristics of a control system response. These
specifications include:

1) stability specifications: the control system must be internally stable in both nominal (nominal
stability) and perturbed (robust stability) cases.

2) performance specifications:

• static performance specifications: quantify the desired steady state accuracy in tracking the
reference input and rejecting external disturbances and noises.

• dynamic performance specifications: quantify the quality of the transient response, (typically
the speed of response) to both the reference input and external disturbances.

As for the stability specifications, the performance specifications must be usually satisfied in both
the nominal (nominal performance) and perturbed (robust performance) cases.

A design specification can be formulated either in the time or frequency domain:

• A time domain specification imposes a desired value for a “time dependent” quantity, which is
typically a parameter of the time response, evaluated in terms of the control error, controlled
output or control signal.

• A frequency domain specification imposes a desired value for a “frequency dependent” quantity,
which is typically a parameter of the sensitivity or complementary sensitivity transfer functions
of the feedback control system.

The most typical time domain specifications are:
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• for the static performance specifications, the maximum control error amplitude that is tolerated
at steady state, in response to canonical inputs (e.g. unist step, ramp, parabolic ramp, etc.).

• for the dynamic performance specifications, the overshoot (Mp) and the rising (tr) or settling
(ts,1% and ts,5% for settling at 1% and 5%, respectively) times of the step response.

The most typical frequency domain specification are:

• for the static performance specifications, the gain of the sensitivity or complementary sensitivity
functions at low frequencies.

• for the dynamic performance specifications, the resonant peak amplitude (Mr) and the closed–
loop bandwidth (ωB).

The rising or settling times in the step response and the closed–loop bandwidth are both measures
of the “system promptness” (i.e. they quantify how quickly the system reacts to abrupt changes of
its inputs), while the overshoot peak in the step response and the resonant peak in the frequency
response are both measures of the “relative stability” (i.e. they quantify how much the system is
damped). When the closed–loop system dynamics can be approximated with that of a first or second
order system (dominant poles approximation), then some approximated relationships between the
time and frequency domain parameters can be given. In particular, when the closed–loop system
admits a second order dominant poles approximation of the type

T (s) = ω2
n

s2 + 2δωns + ω2
n

, 0 ≤ δ < 1 (31)

then:

• the closed–loop bandwidth is approximatively equal to the frequency of the dominant poles,
i.e. ωB ≈ ωn.

Then, by knowing that the typical parameters of the step response of a second order system are
related to the damping and natural frequencies of the system poles by the following expressions

tr ≈ 1.8
ωn

, ts,5% = 3
δωn

, ts,1% = 4.6
δωn

(32)

Mp = e
− πδ√

1−δ2 (33)

it follows that
ωB tr ≈ 1.8 (34)

ωB ts,5% ≈ 3/δ and ωB ts,1% ≈ 4.6/δ (35)

which relate the closed–loop bandwidth to time–domain specifications such as the rising or
settling (with prescribed overshoot) times. The damping factor in (35) is determined from a
prescribed overshoot by using the inverse of (33), namely

δ = log(1/Mp)√
π2 + log2(1/Mp)

(36)

The function (36) is plotted in Fig. 5a.
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• the overshoot Mp and the resonant peak Mr are such that

Mp ≈ Mr

|T (j0)| − 1 (37)

where |T (j0)| is the static gain of the closed–loop system.

Since the controller dynamics directly affects the loop transfer function L(s) = C(s) P (s) of the
feedback control system (where C(s) and P (s) are the controller and plant transfer functions,
respectively), it is convenient, for the purpose of control design, to translate the control design
specifications, formulated either in time or frequency domain, into equivalent specifications for the
loop transfer function. It holds that:

• the steady state control error ess in response to a canonical reference input r(t) depends on the
number of poles at the origin (system type) and the Bode gain of the loop transfer function.
In particular, a static performance specification of the type 1:

– ess = 0 with r(t) = δ−1(t), δ−2(t), . . . , δ−h(t)

– |ess| ≤ ε with r(t) = δ−(h+1)(t)

imposes the following structure for the loop transfer function:

L(s) = Kl

sh
L̂(s) with L̂(0) = 1 and Kl ≥ 1/ε (38)

• for a closed–loop system that admits a second order dominant pole approximation as (31), the
closed–loop bandwidth and the gain crossover frequency ωgc (i.e. frequency where the loop
transfer function has unit magnitude, |L(jωgc)| = 1) are approximately equal. Therefore, from
(34) and (35) it follows that

ωgc ≈ 1.8
tr

(39)

and
ωgc ≈ 3

δ ts,5%
and ωgc ≈ 4.6

δ ts,1%
(40)

• for a closed–loop system that admits a second order dominant pole approximation as (31),
the phase margin φm (i.e. the quantity φm = −π + ∠L(jωgc)) and the damping factor δ are
related by the expression

φm = atan 2δ√√
1 + 4δ4 − 2δ2

(41)

The damping factor in (41) is determined from a prescribed overshoot by using (36). By
combining the two expressions, the plot of Fig. 5b is obtained. Note that for phase margins
below 70◦, the approximation δ ≈ φm/100 is valid.

Once the specifications for the loop transfer function have been formulated, the controller design
can be conveniently carried out with the Bode’s method (frequency response method).

1δ−1(t) denotes the unit step signal; δ−h(t) = th−1δ−1(t) is the h–th causal polynomial signal (e.g. linear ramp,
parabolic ramp, etc).
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Figure 5: (a) Damping factor vs overshoot – see (36); (b) Phase margin vs overshoot – see (41).

3.2 PID controller design with the Bode’s method

In its general formulation, the Bode’s method for the synthesis of a controller C(s) consists of
adding basic dynamic compensators (lead/lag networks) Ci(s) in series to the plant P (s) till the
resulting loop transfer function L(s) =

∏
i Ci(s) P (s) satisfies the design specifications, translated

into properties of the open-loop transfer functions as the phase and gain margin.
In this laboratory activity, the controller structure is selected a priori to be that of a PID controller

C(s) = KP + KI

s
+ KD s = KP

(
1 + 1

TIs
+ TD s

)
(42)

and the Bode’s method is only applied to determine the values of the controller parameters KP , KI

and KD (or KP , TI and TD) that meet the design requirements on the gain crossover frequency ωgc

and phase margin φm, i.e. to have

L(jωgc) = C(jωgc) P (jωgc) = ej(−π+φm) (43)

From (43) it follows that

C(jωgc) = ∆K e∆φ with ∆K = |P (jωgc)|−1 , ∆φ = −π + φm − ∠P (jωgc) (44)

By combining (44) with (42), and equating the real and imaginary parts at the two sides of the
identity, it holds that 

KP = ∆K cos ∆φ

ωgc TD − 1
ωgc TI

= tan ∆φ

(45)

(46)

To solve the underdetermined system of two equations (45) and (46) in the three unknowns KP , TI

and TD, the extra constraint
TI = α TD with α ≥ 4 (47)
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is generally introduced, so that finally



KP = ∆K cos ∆φ

TD = tan ∆φ +
√

(tan(∆φ))2 + 4/α

2 ωgc

TI = αTD

(48)

(49)

(50)

Moreover, KD = KP TD and KI = KP /TI . Note that:

1. for the design of a PI or a PD controller, the condition (44) directly provides the values of the
controller gains, with no need to introduce extra constraints such as (47). In fact, for a PI or
PD controller it follows that:

KP = ∆K cos ∆φ

KD = 1
ωgc

∆K sin ∆φ
(PD controller) (51)


KP = ∆K cos ∆φ

KI = −ωgc ∆K sin ∆φ

(PI controller) (52)

2. The ideal derivative in (42) is not physically implementable. It is usually replaced with a high–
pass filter (“real derivative”) that approximates the frequency response of the ideal derivative
in the low frequency range. A typical choice is

H(s) = s

TLs + 1 (53)

where TL is chosen to get a satisfactory rejection of the measurement noise outside of the
control bandwidth: typically, the parameter is set so that the filter cut–off frequency 1/TL is
2 ÷ 5 times larger of the gain crossover frequency ωgc.

After the synthesis, the internal stability of the control system can verified by using the results that
have been presented in class, and the design adjusted if needed by modifying the desired phase
margin.
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4 Estimation of model parameters

In principle, the control design can be carried out on a nominal model of the plant, provided that a
sufficiently large phase margin is selected for tolerating possible parameter uncertainties that could
potentially destabilise the control system. However, better performances can be usually achieved
when the actual values of the plant parameters are estimated from the experimental data. In this
section it is described a simple experimental procedure for the estimation of the main mechanical
parameters, such as the friction (static and viscous) and the total rotor inertia. These parameters
can be used to improve the control design, either by redesigning the feedback controller with the
updated model plant, or by implementing a feedforward compensator through which better tracking
performance can be achieved.

4.1 Friction estimation

Reconsider the overall mechanical dynamics at motor side reported in (9). After rearranging the
terms, the following torque balance equation results

τm = Jeq
dωm

dt
+ Beq ωm + 1

N
τd (54)

which shows that at any instant, a fraction of the motor torque τm, namely the inertial torque
component

τi ≜ Jeq
dωm

dt
(55)

is used to accelerate the equivalent rotor inertia Jeq, while the remaining part is required to overcome
the total friction torque:

τ ′
f = Beq ωm + 1

N
τd (total friction at motor side) (56)

Note that the total friction torque consists of two terms, namely the viscous friction torque component
Beq ωm, and the static (or Coulomb) friction component τd/N (as seen at motor side), with τd

as defined in (8). Suppose that the motor is operating at steady state with constant speed, i.e.
dωm/dt = 0; then from the torque balance equation (54), it follows that

τm = τ ′
f = Beq ωm + τsf

N
sign(ωm) with dωm

dt
= 0 (57)

which shows that for keeping the motor running at constant speed, the motor torque τm has to
exactly balance the friction torque τ ′

f . This torque balance can be effectively exploited to estimate
the two friction parameters Beq and τsf in (57), as shown in the remaining part of this section. In
fact, suppose to measure the motor torque at different constant speed levels. A direct measurement
of the motor torque is obviously not possible with the available experimental setup (a torque meter
is required for the purpose); however, the law of motor (5) shows that an indirect measurement is
possible by sensing the motor current ia, provided that the torque constant Kt is known. In the
experimental setup, remind that the armature current can be indirectly measured by sensing the
voltage drop across the shunt resistor Rs. Once the torque is known, the viscous and static friction
coefficients in the affine function (57) can be estimated by performing a conventional linear least
squares (LS) fitting of the torque vs speed data. For such purpose, rewrite the model (57) in linear
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regression form as follows:
τm = τ ′

f = φT θ (58)

where
φT =

[
ωm , (1/N) sign(ωm)

]
, θ =

[
Beq , τsf

]T
(59)

are, respectively, the vectors of regressors and unknown parameters to be estimated. Let

ZM = {τm,k, ωm,k} with k = 0, . . . , M − 1 (60)

denote the set of torque/speed pairs measured at M different constant speed levels. The vector
of unknown parameters θ can be determined by minimising the quadratic cost function (quadratic
error)

V (θ) =
M−1∑
k=0

(
τm,k − φT

k θ
)2

(61)

where
φT

k =
[
ωm,k , (1/N) sign(ωm,k)

]
(62)

With the notation

Y =


τm,0

τm,1
...

τm,M−1

 ∈ RM×1 , Φ =


φT

0
φT

1
...

φT
M−1

 ∈ RM×2 (63)

the cost function can be rewritten as

V (θ) = [Y − Φθ]T [Y − Φθ] (64)

which is minimised by the least squares (LS) solution

θ̂LS =
[
B̂eq , τ̂sf

]T
=
(
ΦTΦ

)−1
ΦT Y (65)

The LS estimate τ̂ ′
f of the total friction torque is therefore

τ̂ ′
f = B̂eq ωm + τ̂sf

N
sign(ωm) (66)

Note: in Matlab, suppose to have defined the matrices Φ and Y with variables names Phi and Y;
then, the least squares solution (65) can be computed by using the left matrix division operator “\”,
i.e. thLS = Phi\Y (consult mldivide on the online help).

4.2 Inertia estimation

Suppose to impose a constant acceleration/deceleration to the total gearmotor inertia, i.e. to in-
crease/decrease the motor speed at a constant rate. From (54)–(56) it follows that an estimate
τ̂i of the inertial torque component τi used to accelerate/decelerate the equivalent inertia can be
obtained by subtracting from the measured motor torque τm the friction torque τ̂ ′

f estimated with
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the procedure outlined in the previous Sec. 4.1, namely

τ̂i = τm − τ̂ ′
f = Ĵeq

dωm

dt
with dωm

dt
̸= 0 (67)

Let τ̂i+ > 0 be the average inertial torque estimated with constant acceleration am+ = dωm/dt > 0;
similarly, let τ̂i− < 0 be the average inertial torque estimated with constant deceleration am− =
dωm/dt < 0. Then, the total rotor inertia can be estimated as follows

Ĵeq = τ̂i+ − τ̂i−
am+ − am−

(68)

If multiple acceleration/deceleration phases are repeated over time, then the estimate of the total
rotor inertia can be obtained by averaging the single inertia estimates obtained for each accelera-
tion/deceleration phase, i.e.

Ĵeq = 1
M

M∑
n=1

Ĵeq,n (69)

where Ĵeq,n is the inertia estimate obtained for the nth acceleration/deceleration phase (using (68)),
namely

Ĵeq,n = τ̂i+,n − τ̂i−,n

am+,n − am−,n
(70)

and M denotes the total number of phases.

4.3 Alternative approach: combined friction and inertia estimation

A single experimental test can be used as a replacement of the previous two tests for the simultaneous
estimation of the friction and inertia parameters. Rewrite the torque balance (54) in linear regression
form

τm = φT θ (71)

where
φT =

[
dωm

dt
, ωm , (1/N) sign(ωm)

]
, θ = [Jeq, Beq, τsf ]T (72)

are, respectively, the vectors of regressors and unknown parameters to be estimated. The estimation
problem can be formulated as follows: with the availability of the experimental data (measurements)

ZM = {τm(tk), ωm(tk)} with tk = k Ts , k = 0, . . . , M − 1 (73)

determine the vector of parameters θ that minimises the quadratic cost function (quadratic error)

J =
M−1∑
k=0

[
τm(tk) − φT (tk)θ

]2
(74)

With the notation

Y =


τm(t0)
τm(t1)

...
τm(tM−1)

 ∈ RM×1 , Φ =


φT (t0)
φT (t1)

...
φT (tM−1)

 ∈ RM×3 (75)
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the cost function can be rewritten as in (64), which is then minimised by the LS solution

θ̂LS =
[
Ĵeq , B̂eq , τ̂sf

]
(76)

which is computed by using the expression (65). For the identifiability of the model parameters, the
data (73) must be collected under sufficient excitation conditions of the plant dynamics. For such
purpose, it is sufficient to impose constant acceleration/deceleration phases to the motor during the
data collection experiment.
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