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1 Introduction

1.1 Activity Goal

This laboratory activity focuses on the design and experimental validation of digital position con-
trollers for the Quanser SRV-02 DC servomotor, using two distinct methodologies. The first is Design
by Emulation, where a continuous-time controller is initially developed and subsequently discretized
using numerical methods. The second is Direct Digital Design, in which the controller is formulated
directly in the discrete-time domain, explicitly taking into account the sampling constraints inherent
to digital control platforms.

Both approaches aim to ensure accurate reference tracking, effective disturbance rejection, and
compliance with specified transient performance criteria. To mitigate the effects of actuator satura-
tion, anti-windup mechanisms are implemented. Additionally, state-space techniques are employed
to investigate more advanced control strategies.

1.2 System and Model

The Quanser SRV-02 servomechanism is modeled as a second-order linear time-invariant (LTI) system
that captures the dominant mechanical dynamics while neglecting faster electrical transients, which
have negligible impact on position control.

The system input is the motor drive voltage, and the output is the angular position of the load,
measured via the encoder. Using the physical parameters of the motor, gearbox, and driver, the
open-loop transfer function is defined as:

P psq “
km

NspTms ` 1q
(1)

km “
kdrvkt

ReqBeq ` ktke
Tm “

ReqJeq

ReqBeq ` ktke
(2)

where km is the motor-driver gain, Tm is the time constant characterizing the combined mechanical
and electrical dynamics, and N is the gear ratio. The plant parameters are given in Table 2.

For the purpose of controller synthesis, the system is also expressed in state-space form (given
in a later section). The state vector is composed of the angular position and angular velocity of the
load-side shaft, enabling the application of both classical and modern control design techniques.

1.3 Experimental Setup

Controller designs are first verified through numerical simulations and then validated experimentally
using a real-time control platform based on Simulink Desktop Real-Time.

The experimental system is built around the Quanser SRV-02 servomechanism, which consists of a
permanent-magnet DC motor coupled to an inertial load via a planetary gearbox with a 14:1 reduction
ratio. Angular position feedback is primarily provided by an optical encoder, with a potentiometer
sensor available as an alternative. Both sensors are connected to the output shaft through an anti-
backlash gear mechanism, which serves to minimize mechanical play.

The motor is driven by a linear voltage amplifier, modeled as a first-order low-pass filter with a
static gain of approximately 0.6 and a cut-off frequency close to 1.2 kHz. A shunt resistor is included
in the circuit to enable current measurement.
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Data acquisition and I/O operations are handled by a National Instruments DAQ board, either the
PCI-6221 or PCIe-6321 model, which supports high-resolution analog and digital signals, counters,
and encoder interfacing. All connections are routed through a BNC-2110 terminal board using
shielded cabling. The system is powered by a regulated DC adapter and operated from a PC running
MATLAB/Simulink. The use of the Simulink Desktop Real-Time toolbox guarantees deterministic
execution of control tasks, enabling real-time interaction between the controller and the physical
plant.

2 Tasks, Methodologies and Results

2.1 PID controller design by Emulation

The goal of this section is to describe the design and results of PID controllers designed using
the emulation method. Three types of controllers are considered: a regular PID controller, a PID
controller with an anti-windup mechanism, and a PID controller with feedforward compensation of
the reference signal.

2.1.1 Regular PID controller

The transfer function of a PID controller in continuous-time is as follows:

Cpsq “ KP `
KI

s
` KDs “ KP

ˆ

1 `
1

TIs
` TDs

˙

(3)

TI “ αTD (4)

where α “ 4.
The discrete equivalent of such a controller (with a "real" derivative component) can be derived

using the backward euler discretization method as:

Cpzq “ KP ` KI
Tz

z ´ 1 ` KD
z ´ 1

pTL ` T qz ´ TL
(5)

where T is the sampling time, and the time constant TL is chosen using

TL “
1

2ωgc
(6)

with ωgc being the gain crossover frequency of the continuous-time control design.
The design requirements for the controller were:

• perfect steady state tracking of step position (load side) references.

• perfect steady state rejection of constant torque disturbances.

• Step response (load side) with settling time ts,5% ď 0.15 s and overshoot Mp ď 10%.

By using a second-order dominant pole approximation for the closed-loop system, these requirements
were converted into open-loop transfer function requirements. Then, by using Bode’s method, the
values for the controller parameters were calculated. These values are shown in Table 1.

An example implementation of this controller can be seen in Figure 1.
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Parameter Value
KP 10.4326
KI 5
KD 0.1996
TI 0.0765
TD 0.0191
TL 0.0129

Table 1: PID Controller Parameters

Figure 1: Implementation of the regular PID controller

This controller was tested for three different sampling times (1 ms, 10 ms, and 50 ms) and three
different discretization methods (Euler Backward, Euler Forward, and Tustin). With a reference of 50
degrees, the output of the controlled system, along with performance measurements are summarized
in Figures 2, 3, and 4.
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Figure 2: Response of the Controlled System (Euler Backward)
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Figure 3: Response of the Controlled System (Euler Forward)
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Figure 4: Response of the Controlled System (Tustin)

2.1.2 PID controller with Anti-Windup mechanism

The actuator outputs have a limited dynamic range in real systems, and for the system at hand,
this was modeled in simulation by using a saturation block, as seen in Figure 1. When the actuator
output is saturated, the feedback loop turns out to be effectively disabled.

A problem with the previously described regular PID design was that the integrator unnecessarily
accumulates a large tracking error in case of saturated actuator output. To solve this problem, an
anti-windup mechanism seen in Figure 5 was implemented.
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Figure 5: Implementation of the PID controller with anti-windup

The anti-windup gain KW was chosen using the relations KW “ 1
TW

, and TW “
ts,5%

5 , and its
value was calculated as KW “ 41.6667.

The response of the system with and without this new anti-windup mechanism can be seen in
Figures 6, 7, and 8.
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Figure 6: Response of the Controlled System (Euler Backward)
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Figure 7: Response of the Controlled System (Euler Forward)
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Figure 8: Response of the Controlled System (Tustin)

The large overshoot and "zig-zag" pattern of the responses without the anti-windup mechanism
was caused by the error build-up by the integrator in the controller. As seen in above figures, the
anti-windup mechanism was successful in eliminating this problem.

2.1.3 PID controller with feedforward compensation

To increase the effectiveness of the feedback control system, feedforward control actions can be
incorporated. The structure of the feedforward compensation combined with the previously designed
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regular PID controller can be seen in Figure 9.

Inertia compensation

Friction compensation

BEMF comp.

Figure 9: Implementation of the PID controller with feedforward compensation

The components in different compensation paths seen in Figure 9 were analytically found using
the differential equations describing the plant. They were then modeled in simulation environment
to accept inputs, the derivatives of the reference signal θ˚

l , the load angular position.
One complication with this feedforward scheme is that the first and second derivatives of the

reference signals can not always be known in general. If the reference signal is known beforehand, it
is possible to manually specify ("hard-code") the derivative signals.

For testing purposes, the reference signal and its derivatives were hand crafted using the following
relations:

a˚
i ptq fi

dω˚
i ptq

dt
“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

900 rpm/s if 0 s ď t ă 0.5 s
0 rpm/s if 0.5 s ď t ă 1 s
´900 rpm/s if 1 s ď t ă 2 s
0 rpm/s if 2 s ď t ă 2.5 s
900 rpm/s if 2.5 s ă t ă 3 s

(7)

and
ω˚

i ptq “

ż t

0
a˚

i pτq dτ, ϑ˚
i ptq “

ż t

0
ω˚

i pτq dτ (8)

The controller with this new feedforward compensation scheme was tested with different dis-
cretization methods. Following figures show the results.
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Figure 10: Response of the Controlled System
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Figure 11: Response of the Controlled System (Zoomed)
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2.2 State space controller design by Emulation

The goal of this section is to validate the performance of two discrete-time position controllers
implemented on the experimental setup:

A nominal state-space controller for constant reference tracking without integral action.
A state-space controller with integral action to compensate for steady-state errors.
Both controllers were obtained via forward Euler discretization of the corresponding continuous-

time designs, following the design by emulation methodology. In both cases, a reduced-order observer
was employed to estimate the unmeasured component of the system state, enabling the implemen-
tation of a regulator. Since not all components of the state vector are directly measurable, observer-
based estimation was necessary. Specifically, the angular displacement of the load is directly measured
through an optical encoder, while the angular velocity of the load is not directly accessible and must
be reconstructed through state estimation. This reduced order observer structure was integrated
into both controllers to allow closed-loop regulation . According to realization theory, it is possible
to derive a state-space representation corresponding to the transfer function P(s) in section 1.2.
The state vector is defined as x “ rθl, ωls

T , where θl denotes the angular displacement and ωl

the angular velocity of the load-side shaft. The corresponding continuous-time state-space model,
obtained via realization theory, is given by equation 9.

A “

«

0 1
0 ´ 1

Tm

ff

, B “

«

0
km

NTm

ff

, C “

”

1 0
ı

, D “ 0 (9)

This representation is consistent with the second-order transfer function from which it is derived,
as confirmed by the relationship:

P psq “ C psI ´ Aq
´1 B ` D (10)

The availability of a state-space model enables the design of controllers using state feedback
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techniques. In this section, this model will be exploited to synthesize both nominal and integral-
action state-space controllers, relying on the placement of closed-loop poles to meet the following
dynamic performances :

• Step response with overshoot Mp ď 10%

• Step response with 5% settling time ts,5% ď 0.15s

2.2.1 Reduced order observer

To estimate the internal state of the DC gearmotor system, we designed a continuous-time reduced-
order state observer, leveraging the fact that only the angular velocity ωl of the load-side shaft needs
to be estimated, since the angular position θl is directly measured by an encoder. Because of the
structure of the C matrix, C “ r1 0s, we do not need a change of basis. By selecting the state
transformation matrix T “ I, the design simplifies to the direct application of equations :

Ao “ A1
22 ´ LA1

12 Bo “
“

B1
2 ´ LB1

1, pA1
22 ´ LA1

12qL ` A1
21 ´ LA1

11
‰

Co “ T

«

0pˆpn´pq

Ipn´pqˆpn´pq

ff

Do “ T

«

0pˆm Ipˆp

0pn´pqˆm L

ff

Following this procedure, the observer dynamics are expressed in terms of the new variable
z “ v̂ ´ Ly , leading to a dynamic system of the form:

Σobs :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

9z “ Aoz ` Bo

»

–

u

y

fi

fl

x̂ “ Coz ` Do

»

–

u

y

fi

fl

The matrices are computed as follows:

Ao “ ´
1

Tm
´ L, Bo “

”

km
NTm

, ´ 1
Tm

´ L, L
ı

, Co “

«

0
1

ff

, Do “

«

0 1
0 L

ff

The observer gain L P R is chosen to ensure the asymptotic stability of the estimation error
dynamics by placing the eigenvalue of the matrix Ao to λo “ ´5 ˆ wn . This guarantees that
the estimation of the unmeasured state converges rapidly and does not interfere with the controller
dynamics. Once the observer is synthesized, the estimated state x̂ can be substituted into the
feedback control law, enabling the implementation of a dynamic output feedback regulator. This
structure allows for effective control of the system even when full state measurement is not available.

2.2.2 Discretization of the observer

Once the reduced-order observer has been designed in continuous time, it is discretized using the
forward Euler method, as required. According to the assignment instructions, the continuous-time
observer is approximated in discrete time by the following state-space system:
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Σ̂d :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

zrk ` 1s “ Φozrks ` Γo

»

–

urks

yrks

fi

fl

x̂rks “ Hozrks ` Jo

»

–

urks

yrks

fi

fl

Where the discrete-time matrices are computed as:

Φo “ I ` AoTs, Γo “ BoTs, Ho “ Co, Jo “ Do

with Ts denoting the sampling time of the digital controller. This forward Euler discretization is
straightforward to implement and preserves the observer structure by approximating the continuous-
time dynamics over each sampling interval. The matrices Ao, Bo, Co, and Do are inherited from the
continuous-time design and substituted into the expressions above to yield the numerical values for
Φo, Γo, Ho, and Jo.
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Figure 13: Nominal forward observer output
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Figure 14: Integral forward observer output

2.2.3 Nominal Position State-Space Controller

The implementation of the nominal state-space controller begins with the design of a continuous-
time state-feedback law that ensures the desired transient performance in terms of settling time and
overshoot. To achieve this, we placed the poles accordingly:

δ “
log

´

1
Mp

¯

c

π2 `

´

log
´

1
Mp

¯¯2

ωd “ ωn

a

1 ´ δ2

λ1 “ ´wnδ ` iωd

λ2 “ ´wnδ ´ iωd

λ “

«

´20.0 ` 27.2i

´20.0 ´ 27.2i

ff

With the Matlab command K=place(A,B,λ) finds the state feedback matrix K that places in
poles in λ .

To achieve perfect asymptotic tracking of constant reference signals, two feedforward components
were included. The steady-state values of the system state and input, x8 and u8, were expressed
as linear functions of the reference r8. These gains were computed by solving the linear system:

«

A B

C 0

ff «

Nx

Nu

ff

“

«

0
1

ff

where Nx P R2ˆ1 and Nu P R denote the state and input feedforward gains, respectively. The
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resulting control law is:

u “ u8 ´ Kpx ´ x8q “ Nur8 ´ Kpx ´ Nxr8q

This structure ensures that the system output tracks the constant reference with zero steady-state
error under nominal conditions. Since the full system state is not directly measurable, the control law
is implemented using the estimated state provided by the previously designed reduced-order observer.
This allows the controller to operate in a regulator configuration, combining state estimation with
feedback and feedforward components. Given that the control law is purely algebraic, the discrete-
time version was obtained by simply evaluating the same expression at discrete time steps. The
forward Euler discretization method was used to discretize the plant dynamics for implementation
on the experimental setup.
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Figure 15: Nominal forward

2.2.4 Robust Position State-Space Controller

To enhance the tracking capabilities of the system in the presence of constant disturbances or model
uncertainties, an integral action was incorporated into the control architecture. This addition ensures
asymptotic rejection of constant disturbances and robustness of the closed-loop system, particularly
with respect to steady-state tracking performance. To implement this, the original state-space model
was augmented by introducing a new integrator state xIptq, defined as the integral of the tracking
error:

xIptq “

ż t

0
rypτq ´ rpτqs dτ
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The resulting augmented state vector becomes xe “

”

xI xJ

ıJ

, and the extended state-space model
is expressed as:

«

9xIptq

9xptq

ff

“

«

0 C

0 A

ff

looomooon

Ae

«

xIptq

xptq

ff

`

«

0
B

ff

loomoon

Be

uptq ´

«

1
0

ff

loomoon

Ee

rptq

yptq “

”

0 C
ı

loomoon

Ce

«

xIptq

xptq

ff

A state-feedback control law was then designed based on this extended model, with the general form:

uptq “ ´Kexeptq ` u8 ` Kx8

where Ke “

”

KI K
ı

is the augmented feedback gain composed of the integral gain KI and
the original state feedback gain K. These gains were computed via pole placement applied to the
closed-loop system:

Acl “ Ae ´ BeKe “

«

0 C

´BKI A ´ BK

ff

The poles were selected to maintain the desired stability margin and convergence speed while ac-
counting for the added integrator dynamics. Their locations were chosen based on engineering
trade-offs between speed of response and overshoot, generally placing the integrator-associated pole
on the real axis with a sufficient negative real part to ensure fast error correction without inducing
instability. The best result were obtained with the allocation choice λc,t1,2,3u “ ´σ “ ´wnδ “ ´20.
The integrator state xI was updated in real time using the measured output y to compute the error
y ´ r. For digital implementation, the integral term was discretized using the forward Euler method,
in accordance with the discretization scheme used for the rest of the system. Unlike the nominal
case, the inclusion of integral action requires careful tuning of the sampling time to avoid numer-
ical instability and performance degradation, due to the higher order of the closed-loop dynamics.
When implemented with sufficiently small sampling times, the robust controller demonstrated im-
proved steady-state accuracy and reduced sensitivity to disturbances, at the cost of slightly degraded
transient performance, as expected from the integrator dynamics.
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Figure 16: Integral forward

2.3 State space controller design by Direct Digital Design

In this section, the controller is designed directly in the discrete-time domain by applying an exact
discretization of the continuous-time plant model using the zero-order hold (ZOH) method. This
operation is carried out through MATLAB’s c2d function, resulting in the discrete-time state-space
model:

Σd “ pΦ, Γ, H, Jq

where:

Φ “ eATs , Γ “

ż Ts

0
eAτ B dτ,

H “ C, J “ D.

2.3.1 Nominal Position State-Space Controller

Starting from the discretized model Σd “ pΦ, Γ, H, Jq, a discrete-time state-feedback controller is
synthesized by assigning the closed-loop poles via standard pole placement. The desired discrete-time
poles are obtained from the continuous-time ones through the exponential mapping:

λd “ eλcTs .

To ensure reference tracking, the feedforward gains are computed as:
«

Nx

Nu

ff

“

«

Φ ´ I Γ
H J

ff´1 «

0
1

ff

,

where Nx and Nu denote the state and input feedforward gains, respectively. These gains remain
the same across different sampling times, since they depend only on the plant model.
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A reduced-order observer is designed based on the discrete-time model, using the same method-
ology as in the emulation approach but now applied directly to pΦ, Γ, H, Jq.
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Figure 17: Direct digital nominal
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Figure 18: Direct digital nominal observer output

Figures 17 and 18 illustrate the closed-loop response and observer estimates. At Ts “ 1 ms,
the system shows fast, well-damped behavior with accurate estimation. As Ts increases, the perfor-
mance gradually degrades, leading to slower responses, increased oscillations, and noisier estimates.
Nevertheless, the ZOH-based design retains satisfactory performance for moderate sampling times,
outperforming emulation with forward Euler, which exhibits instability or significant overshoot in
such conditions.
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2.3.2 Robust Position State-Space Controller

To improve reference tracking and reject disturbances, integral action is introduced by augmenting
the state-space model. The extended discrete-time system becomes:

Φe “

«

1 H

0 Φ

ff

, Γe “

«

0
Γ

ff

, He “

”

0 H
ı

, Je “ J.

The state-feedback and observer gains are again computed via pole placement, with poles mapped
to the discrete domain using the same exponential transformation, as discussed earlier. The feedfor-
ward gains Nx and Nu remain unchanged.
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Figure 19: Direct digital robust
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Figure 20: Direct digital robust observer output

As shown in Figures 19 and 20, the robust controller reduces the steady-state error across all
sampling times, thanks to the integral action. The system exhibits excellent performance for Ts “

1 ms, while larger sampling intervals (e.g., 10 ms and 50 ms) lead to slower convergence and
moderate oscillations. Estimation quality also degrades slightly at higher Ts, particularly for the
velocity component.

Overall, the direct digital design using exact discretization proves to be more resilient to variations
in sampling time compared to the emulation approach, particularly when forward Euler is used. The
ZOH method ensures a more faithful representation of the original dynamics, making it a reliable
choice for digital controller implementation.
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A Appendix

A.1 Data sheet

Symbol Description Matlab Variable Value
Vmot Motor nominal voltage – 6.0 V
Rm Motor armature resistance Rm 2.6 Ω
Lm Motor armature inductance Lm 0.18 mH
kt Motor current-torque constant kt 7.68 ˆ 10´3 Nm/A
ke Motor back-EMF constant km 7.68 ˆ 10´3 V·s/rad

Low-gear total gear ratio Kg 14
ηm Motor efficiency eta.m 0.69
ηg Gearbox efficiency eta.g 0.80

Jm,rotor Rotor moment of inertia Jm.rotor 3.90 ˆ 10´7 kg·m2

Jeq High-gear equivalent moment of inertia (no load) Jeq 6.51 ˆ 10´7 kg·m2

Beq High-gear equivalent viscous damping coefficient Beq 1.22 ˆ 10´7 N·m/(rad/s)
mb Mass of bar load m.b 0.038 kg
Lb Length of bar load L.b 0.1525 m
md Mass of disc load m.d 0.04 kg
rd Radius of disc load r.d 0.05 m

mmax Maximum load mass – 5 kg
fmax Max input voltage frequency – 50 Hz
Imax Maximum input current – 1 A
ωmax Maximum motor speed – 628.3 rad/s

Table 2: Main SRV02 specifications

Symbol Description Matlab Variable Value
Kgi Internal gearbox ratio Kgi 14

Kge,low Internal gearbox ratio (low-gear) Kge 1
Kge,high Internal gearbox ratio (high-gear) Kge 5

m24 Mass of 24-tooth gear m24 0.005 kg
m72 Mass of 72-tooth gear m72 0.030 kg
m120 Mass of 120-tooth gear m120 0.083 kg
r24 Radius of 24-tooth gear r24 6.35 ˆ 10´3 m
r72 Radius of 72-tooth gear r72 0.019 m
r120 Radius of 120-tooth gear r120 0.032 m

Table 3: SRV02 gearhead specifications
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Symbol Description Matlab Variable Value
Kpot Potentiometer sensitivity K_POT 35.2 deg/V
Kenc SRV02-E encoder sensitivity K_ENC 4096 counts/rev
Kenc SRV02-EHR encoder sensitivity K_ENC 8192 counts/rev
Ktach Tachometer sensitivity K_TACH 1.50 V/kRPM

Table 4: SRV02 sensor specifications

A.2 Detailed calculation for PID design

1 close all;
2
3 encoder_pulse_count = 500; % for motor 8 and 10, it is 1024 , otherwise 500
4 encoder_quantization = 360 / ( encoder_pulse_count * 4); % this is used in the simulink model
5 run('load_params .m')
6
7 B_eq = 8.1298e -07;
8 tau_sf = 0.0056039;
9 J_eq = 6.0731e -07;

10
11 %% construct the simplified plant transfer function ( end of page 5 in the handout )
12 R_eq = (mot.R + sens.curr.Rs);
13 k_m = (drv. dcgain * mot.Kt) / (R_eq*B_eq + mot.Kt*mot.Ke);
14 T_m = (R_eq * J_eq) / (R_eq*B_eq + mot.Kt*mot.Ke);
15 simplified_P_num = k_m;
16 simplified_P_den = [T_m * gbox.N, gbox.N, 0];
17 P_TF = tf( simplified_P_num , simplified_P_den );
18
19 % settling time ( limit is 0.15)
20 t_s = 0.12; % seconds
21 % overshoot ( limit is 10%)
22 M_p = 0.07;
23
24 % sampling time
25 T_list = [0.001 , 0.01 , 0.05];
26
27 %% FOR REGULAR PID
28 % design the controller
29 save (" ws_before_controller .mat ");
30 [PID_K_P , PID_K_I , PID_K_D , PID_T_I , PID_T_D , PID_T_L , C_TF , OL_TF , CL_TF , OL_2TF , CL_2TF , w_n , w_gc , delta , phi_m ] =

controller_designer (t_s , M_p , P_TF);
31 PID_T_W = t_s / 5;
32 PID_K_W = 1 / PID_T_W ;
33
34 % nice values
35 PID_K_I = 5;
36 PID_T_L = 1 / (2 * w_gc); % for PID derivative
37 SAMPLING_T = T_list (1); % USE 1, 2, 3 FOR TESTS (50 deg step)
38
39 %% FOR PID WITH WINDUP
40 % % design the controller
41 % save (" ws_before_controller .mat ");
42 % [PID_K_P , PID_K_I , PID_K_D , PID_T_I , PID_T_D , PID_T_L , C_TF , OL_TF , CL_TF , OL_2TF , CL_2TF , w_n , w_gc , delta , phi_m ] =

controller_designer (t_s , M_p , P_TF);
43 % PID_T_W = t_s / 5;
44 % PID_K_W = 1 / PID_T_W ;
45 %
46 % % nice values
47 % PID_T_L = 1 / (2 * w_gc); % for PID derivative
48 % SAMPLING_T = T_list (2); % USE 2 FOR TESTS (360 deg step)
49
50 %% FOR PID WITH FEEDFORWARD
51 % % design the controller
52 % save (" ws_before_controller .mat ");
53 % [PID_K_P , PID_K_I , PID_K_D , PID_T_I , PID_T_D , PID_T_L , C_TF , OL_TF , CL_TF , OL_2TF , CL_2TF , w_n , w_gc , delta , phi_m ] =

controller_designer (t_s , M_p , P_TF);
54 % PID_T_W = t_s / 5;
55 % PID_K_W = 1 / PID_T_W ;
56 %
57 % % nice values
58 % PID_K_P = 8;
59 % PID_K_I = 4;
60 % PID_K_D = 0.3;
61 %
62 % PID_T_L = 1 / (2 * w_gc); % for PID derivative
63 % SAMPLING_T = T_list (2); % USE 2 FOR TESTS
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1 function [PID_K_P , PID_K_I , PID_K_D , PID_T_I , PID_T_D , PID_T_L , controller_tf , ol_tf , cl_tf , ol_2tf , cl_2tf , w_n ,
w_gc , delta , phi_m ] = controller_designer (t_s , M_p , P_TF)

2 load('ws_before_controller .mat '); % load parameters
3 %% 2.2 - Design and numerical validation of the position PID controller
4 % Formulation of control design specifications for the loop transfer function
5 delta = log (1 / M_p) / sqrt(pi ^2 + (log (1 / M_p))^2);
6 w_n = 3 / ( delta * t_s);
7 delta_2 = delta ^2;
8 delta_4 = delta ^4;
9 sqrt_1_delta_4 = sqrt (1 + 4 * delta_4 );

10 phi_m = atan (2 * delta / (sqrt( sqrt_1_delta_4 - 2 * delta_2 ))); % phase margin
11 % NOTE: this approximation is super bad , the dominant poles are not even
12 % matching the resultant closed loop poles
13 cl_2tf = tf(w_n ^2, [1, 2 * delta * w_n , w_n ^2]); % approximation
14 ol_2tf = cl_2tf / (1 - cl_2tf ); % approximation
15
16 w_gc = 3 / ( delta * t_s); % approximation (open loop gain crossover freq .)
17 % % find the gain crossover freq. (the approximation does not give a nice result , empirically finding it here)
18 % [mag_OL , ~, w_OL] = bode(ol_2tf , logspace (-2, 2, 100000) ); % WARN: freq range here will not work for every system
19 % mag_db_OL = 20 * log10 ( squeeze ( mag_OL )); % unnecessary but whatever
20 % idx_P = find( mag_db_OL <= 0, 1, 'first ');
21 % w_gc = w_OL( idx_P );
22
23 % disp (" WE WANT ");
24 % disp (" nat. freq. w_n: " + num2str (w_n));
25 % disp (" damping coef. delta : " + num2str ( delta ));
26 % disp (" phase margin phi_m : " + num2str ( phi_m ));
27 % disp (" ol gain cross . freq. w_gc: " + num2str (w_gc));
28 % disp (" poles of the cl :");
29 % disp(pole( cl_2tf ));
30
31 % freq response of P at gc
32 [mag , phase , ~] = bode(P_TF , w_gc);
33 phase = phase *pi /180; % gc phase ( convert to rad)
34 delta_K = 1 / mag;
35 delta_phi = -pi + phi_m - phase ;
36
37 % PID parameters
38 alpha = 4; % we 're taking T_I / T_D 4 for now ( alpha >= 4)
39 PID_K_P = delta_K * cos( delta_phi );
40 PID_T_D = (tan( delta_phi ) + sqrt (( tan( delta_phi ))^2 + 4 / alpha )) / (2 * w_gc);
41 PID_T_I = alpha * PID_T_D ;
42 PID_K_D = PID_K_P * PID_T_D ;
43 PID_K_I = PID_K_P / PID_T_I ;
44 % 1 / T_L = w_gc * 2 / 5
45 PID_T_L = 1 / (5 * w_gc); % 5 / 2 / w_gc
46
47 controller_tf = tf ([ PID_K_P * PID_T_D + PID_K_P *PID_T_L , PID_K_P + PID_K_I *PID_T_L , PID_K_I ], [PID_T_L , 1, 0]);
48 ol_tf = controller_tf * P_TF;
49 cl_tf = feedback (ol_tf , 1);
50
51 % disp (" AFTER DESIGN ");
52 % disp (" poles of the cl :");
53 % disp(pole( cl_tf ));
54 % disp (" zeros of the cl :");
55 % disp(zero( cl_tf ));
56 % disp ("P: " + num2str ( PID_K_P ));
57 % disp ("I: " + num2str ( PID_K_I ));
58 % disp ("D: " + num2str ( PID_K_D ));
59 end

A.3 Detailed calculations for state space design with emulation

1 %% Nominal control
2
3 % State space model
4 J_eq = 6.51e -7;
5 B_eq = 1.22e -6;
6 R_eq = (mot.R + sens.curr.Rs);
7
8 A = [0, 1; 0, -(R_eq*B_eq+mot.Kt*mot.Ke)/( R_eq*J_eq)];
9 B = [0; (drv. dcgain *mot.Kt)/( gbox.N*R_eq*J_eq)];

10 C = [1, 0];
11 D = 0;
12
13 % Specification
14 Mp = 0.1;
15 ts_5 = 0.15;
16
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17 % Second order approximation
18 delta = log (1/ Mp)/sqrt(pi ^2+( log (1/ Mp))^2);% damping coefficient
19 wn = 3 / ( delta * ts_5); % natural frequency
20 lambda1 = -delta * wn + 1i * wn * sqrt (1 - delta ^2);
21 lambda2 = -delta * wn - 1i * wn * sqrt (1 - delta ^2);
22 poles = [lambda1 , lambda2 ];
23 K = place (A, B, poles );
24
25 % Feedforward gains calculation
26 M = [A B; C 0];
27 rhs = [ zeros (size(A ,1) ,1); 1];
28 sol = M \ rhs;
29 Nx = sol (1: end -1);
30 Nu = sol(end);
31
32 %% Reduced order observer
33 lambda_o = 5 * (-wn);
34 A22 = A(2 ,2);
35 A12 = A(1 ,2);
36 L = place (A22 , A12 , lambda_o );
37
38 Ao = (A22 - L);
39 Bo = [B(2) , Ao * L ];
40 C_o = [0; 1];
41 D_o = [0, 1; 0, L];
42
43 %% Discretization
44
45 % Choise of sampling time T_s = 1e -3 / 10e -3 / 50e -3
46 T_s = 1e -3;
47
48 % Forward euler method
49 Phi_o = 1 + Ao * T_s;
50 Gamma_o = Bo * T_s;
51 H_o = C_o;
52 J_o = D_o;

1 %% Robust control
2
3 % State space model
4 J_eq = 6.51e -7;
5 B_eq = 1.22e -6;
6 R_eq = (mot.R + sens.curr.Rs);
7
8 A = [0, 1; 0, -(R_eq*B_eq+mot.Kt*mot.Ke)/( R_eq*J_eq)];
9 B = [0; (drv. dcgain *mot.Kt)/( gbox.N*R_eq*J_eq)];

10 C = [1, 0];
11 D = 0;
12
13 % Augmented state space model
14 A_e = [0 C; zeros (size(A ,1) ,1), A];
15 B_e = [0;B];
16 C_e = [0,C];
17 D_e = 0;
18
19 % Specification
20 Mp = 0.1;
21 ts_5 = 0.15;
22
23 % Second order approximation
24 delta = log (1/ Mp)/sqrt(pi ^2+( log (1/ Mp))^2);% damping coefficient
25 wn = 3 / ( delta * ts_5); % natural frequency
26 sigma = delta * wn;
27 omega_d = wn * sqrt (1 - delta ^2);
28
29 % Pole allocation choise
30 poli1 = [- sigma + 1i*omega_d , -sigma - 1i*omega_d , -sigma ];
31 poli2 = [-sigma , -sigma , -sigma ];
32 poli3 = [ -2* sigma + 1i*omega_d , -2* sigma - 1i*omega_d , -2* sigma ];
33 poli4 = [ -2* sigma + 1i*omega_d , -2* sigma - 1i*omega_d , -3* sigma ];
34
35 poli = poli2 ; % our choise
36 Ke = acker (A_e , B_e , poli);
37 K_I = Ke (1);
38 K = Ke (2: end);
39
40 % Feedforward gains calculation
41 M = [A B; C 0];
42 rhs = [ zeros (size(A ,1) ,1); 1];
43 sol = M \ rhs;
44 Nx = sol (1: end -1);
45 Nu = sol(end);
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46
47 %% Reduced order observer
48 lambda_o = 5 * (-wn);
49 A22 = A(2 ,2);
50 A12 = A(1 ,2);
51 L = place (A22 ', A12 ', lambda_o ) ';
52 Ao = A22 - L;
53 Bo = [B(2) , (A22 - L) * L];
54 Co = [0; 1];
55 Do = [0, 1; 0, L];
56
57 %% Discretization
58
59 % Choise of sampling time T_s = 1e -3 / 10e -3 / 50e -3
60 T_s = 1e -3;
61
62 % Forward euler method
63 Phi_o = 1 + Ao * T_s;
64 Gamma_o = Bo * T_s;
65 H_o = Co;
66 J_o = Do;

A.4 Detailed calculations for state space design with direct method

1 %% Direct nominal state spece design
2
3 % State space model
4 J_eq = 6.51e -7;
5 B_eq = 1.22e -6;
6 R_eq = (mot.R + sens.curr.Rs);
7
8 A = [0, 1; 0, -(R_eq*B_eq+mot.Kt*mot.Ke)/( R_eq*J_eq)];
9 B = [0; (drv. dcgain *mot.Kt)/( gbox.N*R_eq*J_eq)];

10 C = [1, 0];
11 D = 0;
12
13 sys_c = ss(A, B, C, D);
14
15 % Specification
16 Mp = 0.1;
17 ts_5 = 0.15;
18
19 % Second order approximation
20 delta = log (1/ Mp)/sqrt(pi ^2+( log (1/ Mp))^2); % damping coefficient
21 wn = 3 / ( delta * ts_5); % natural frequency
22
23 % Controller eigenvalues
24 lambda1 = -delta * wn + 1i * wn * sqrt (1 - delta ^2);
25 lambda2 = -delta * wn - 1i * wn * sqrt (1 - delta ^2);
26
27 % Observer eigenvalues
28 lambda_o_cont = 5*( - wn);
29
30 % Choise of sampling time T_s = 1e -3 / 10e -3 / 50e -3
31 T_s = 1e -3;
32
33 %% Discretization
34 sys_d = c2d(sys_c , T_s , 'zoh ');
35 [Phi , Gamma , H, J] = ssdata ( sys_d );
36
37 % Nominal control design
38 z1 = exp( lambda1 * T_s);
39 z2 = exp( lambda2 * T_s);
40 z_poli = [z1 , z2 ];
41 K = place (Phi , Gamma , z_poli );
42
43 % Feedforward gains calculation
44 M = [Phi - eye(size(Phi)), Gamma ; H, J];
45 rhs = [ zeros (size(Phi ,1) ,1); 1];
46 sol = M \ rhs;
47 Nx = sol (1: end -1);
48 Nu = sol(end);
49
50 % Reduced order observer design
51 Phi11 = Phi (1 ,1); Phi12 = Phi (1 ,2);
52 Phi21 = Phi (2 ,1); Phi22 = Phi (2 ,2);
53 Gamma1 = Gamma (1); Gamma2 = Gamma (2);
54 z_o = exp( lambda_o_cont * T_s);
55
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56 Phi_o = Phi22 - L * Phi12 ;
57 Gamma_o = [ Gamma2 - L * Gamma1 , ( Phi22 - L * Phi12 ) * L + Phi21 - L * Phi11 ];
58 H_o = [0; 1];
59 J_o = [0, 1; 0, L];

1 %% Direct robust state space design
2
3 % State space model
4 J_eq = 6.51e -7;
5 B_eq = 1.22e -6;
6 R_eq = (mot.R + sens.curr.Rs);
7
8 A = [0, 1; 0, -(R_eq*B_eq+mot.Kt*mot.Ke)/( R_eq*J_eq)];
9 B = [0; (drv. dcgain *mot.Kt)/( gbox.N*R_eq*J_eq)];

10 C = [1, 0];
11 D = 0;
12
13 sys_c = ss(A, B, C, D);
14
15 % Specification
16 Mp = 0.1;
17 ts_5 = 0.15;
18
19 % Second order approximation
20 delta = log (1/ Mp)/sqrt(pi ^2+( log (1/ Mp))^2); % damping coefficient
21 wn = 3 / ( delta * ts_5); % natural frequency
22
23 % Controller eigenvalues
24 sigma = delta * wn;
25 omega_d = wn * sqrt (1 - delta ^2);
26 pole1 = [- sigma + 1i*omega_d , -sigma - 1i*omega_d , -sigma ];
27 pole2 = [-sigma , -sigma , -sigma ];
28 pole3 = [ -2* sigma + 1i*omega_d , -2* sigma - 1i*omega_d , -2* sigma ];
29 pole4 = [ -2* sigma + 1i*omega_d , -2* sigma - 1i*omega_d , -3* sigma ];
30
31 poli = poli2 ; % our choise
32
33 % Observer eigenvalues
34 lambda_o_s = 5*( - wn);
35
36 % Choise of sampling time T_s = 1e -3 / 10e -3 / 50e -3
37 T_s = 1e -3;
38
39 %% Discretization
40 sys_d = c2d(sys_c , T_s , 'zoh ');
41 [Phi , Gamma , H, J] = ssdata ( sys_d );
42
43 % Augmented state space model
44 Phi_e = [1, H; zeros (2 ,1) , Phi ];
45 Gam_e = [0; Gamma ];
46 H_e = [0, H];
47 J_e = 0;
48
49 % Robust control design
50 pole_z = exp( pole2 * T_s);
51 Ke = acker (Phi_e , Gam_e , pole_z );
52 K_I = Ke (1);
53 K = Ke (2: end)
54
55 % Feedforward gains calculation
56 M = [Phi - eye (2) , Gamma ; H, J];
57 rhs = [0; 0; 1];
58 sol = M \ rhs;
59 Nx = sol (1:2) ;
60 Nu = sol (3);
61
62 % Reduced order observer design
63 Phi11 = Phi (1 ,1); Phi12 = Phi (1 ,2);
64 Phi21 = Phi (2 ,1); Phi22 = Phi (2 ,2);
65 Gam1 = Gamma (1); Gam2 = Gamma (2);
66 lambda_o_z = exp( lambda_o_s * T_s);
67 L = place (Phi22 ', Phi12 ', lambda_o_z ) ';
68
69 Phi_o = Phi22 - L * Phi12 ;
70 Gamma_o = [Gam2 - L * Gam1 , ( Phi22 - L * Phi12 ) * L + Phi21 - L * Phi11 ];
71 H_o = [0; 1];
72 J_o = [0, 1; 0, L];
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A.5 Example of Simulink model for numerical simulations

Figure 21: State-space nominal controller with emulation method

A.6 Example of Simulink model for experimental simulations

SS robust discrete

DC servomotor Interface

Analog
Output

Analog
Input

Encoder
Input

Text

Figure 22: Experimental tests setup
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